
2768 Journal of the American Chemical Society /101:10 / May 9, 1979 

log K (sec"1) 

-U 

'AB 
NH3 

* 

2 4 6 8 pD 

Figure 3. The log (&AB) and log (£NH3) (deuteration rate of amine group) 
vs. pD plots for cw-K[Co(mal)2(NH3)2]. 

not HN that exchanges first with deuterium. Over the whole 
pD range examined, no change in chemical shift5 and spin-spin 
coupling constant8 was observed. 

The origin of the stereoselectivity is not readily apparent.9 

The origin of the reversal of stereoselectivity appears, however, 
to be explained as follows. It is seen in Figure 2 that the reversal 
is brought about by an anomalous decrease in /CHN and the 
steady increase in kuo with pD. Next, we note in Figure 3 that, 
at a pD value of ~7.5, wherein the reversal happens for cis-
(NH3)2 compound, the deuteration rate of NH3 (&NH3) ex­
ceeds that of CH2 (/CAB), but both rates begin to be suppressed. 
Now, at lower pD values the exchange of amine hydrogens is 
slower than that of CH2 hydrogens and can not compete with 
the latter process. If, however, ^ H 3 increases to a comparable 
magnitude with ^AB,10 amine exchange can interfere with the 
CH2 change and both amine and CH2 hydrogens scramble for 
the OD - catalysis. As a result, both rates will tend to fall to­
gether. Even under such circumstances, the deuteration rate 
of Ho may well be little affected by such competition, because 
of this proton being situated farthest apart from the amine 
group. Only the H^ hydrogen, being adjacent to the amine 
group, pertains to the scrambling for the catalysis, which is 
consistent with the anomalous decrease of only &HN in Figure 
2. Some support to this view seems to be provided by the ob­
servation that the reversal did not take place for A .̂TV'-dmen, 
tn, ris-py2, and phen compounds. In the first two complexes, 
exchange rates of amine hydrogens were slower than CH2 
exchange and the last two compounds lack exchangeable amine 
hydrogens. 
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Apparent Concurrent Acetylene-Vinylidenecarbene 
Rearrangements, Silyl-Acetylide Metathesis, 
and Alkyne Cleavage in the Interaction of 
Bis(trimethylsilyl)acetylene with (7^-CsH5)Co(CO)2. 
Crystal and Molecular Structure 
of a Novel Biscarbyne Complex: 
[M3T/1-CSi(CH3)3][M3r;1-C3Si(CH3)3][(r;5-C5H5)Co]3 

Sir: 

We have recently utilized neat bis(trimethyl)silylacetylene 
(1) as a hindered co-oligomerization partner in cobalt-cata­
lyzed reactions with diynes to effect chemospecificity and allow 
introduction of masked functionality (in the form of the tri­
methylsilyl group) in synthetic methodology leading to com­
plex molecules.1 Its use was based on the premise that steric 
factors would prevent reaction of 1 with itself, thereby allowing 
it to simply coordinate to the metal and eventually enter the 
cyclization cycle with added diyne. We now report that, on 
exposure to larger than catalytic amounts of CpCo(CO)2,

2 

compound 1 produces a fascinating array of molecular struc­
tures (2-5)3 which point to the concurrent operation of several 
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novel reaction pathways traversed by (sterically hindered) 
acetylenes in the coordination sphere of cobalt. This commu­
nication also contains the first report of a crystallographically 
characterized trinuclear transition metal cluster capped by two 
triply bridging carbyne ligands. 

Tetrakis(trimethylsilyl)butatriene (2) was purified by su­
blimation and preparative gas chromatography3 and charac­
terized by its spectral data,4 particularly the 13C NMR spec­
trum which shows two nonequivalent carbons at characteris­
tically low chemical shifts.5 The tetrasilylated cyclobutadiene 
sandwich complex 3 has been obtained previously in low yield 
(4.7%) as the sole product from the reaction of 6 with I.6 

Spectral investigation4 of the new sandwich 43 revealed the 
presence of different trimethylsilyl groups in the ratio 2:1:1 by 
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Figure 1. Perspective drawing (adapted from an ORTEP plot) of the 
[^I'-CSKCHjhHMsV-CsSKCHsWK^-CsHsKoh molecule, 5. Cobalt 
and silicon atoms are represented by large- and medium-sized open circles 
labeled with capital letters and numbers, respectively. Carbon atoms are 
represented by small open circles and all hydrogen atoms are omitted. 

1H NMR, and the diagnostic mass spectral fragmentation 
pattern.7 Compound 5 was isolated from this reaction in very 
small quantities.2-4 The mass spectrum and elemental analysis 
confirmed the general composition Me3SiC4SiMe3(CpCo)3 
which seemed to indicate the formation of a structure of the 
type 7. Similar trinuclear metal cluster alkyne complexes had 
been postulated previously for iron,8 rhodium,9 and iridium9 

complexes. However, since the unusual stability and lack of 
reactivity of our complex (vide infra) appeared to be incom­
patible with the coordinatively unsaturated nature of 7, an 
X-ray crystallographic study of it was undertaken. 
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Large well-shaped air-stable single crystals of 5, obtained 
by recrystallization from hexane, are orthorhombic, space 
group/V1-Z)2/,

14 (No. 60), with a = 11.333 (2) k,b = 18.205 
(4) A, c = 25.679 (4) A, and Z = 8 (dcakd =1.421 g cm""3, 
^measd = 1.412 g cm~3). Three-dimensional diffraction data 
were collected on a computer-controlled four-circle Syntex Pl 
autodiffractometer using graphite-monochromated Mo Ka 
radiation and full (1° wide) w scans. The structural parame­
ters' ' have been refined to convergence (R (unweighted, based 
on F) = 0.044 for 2407 independent reflections having 2#MO KS 
< 43° and / > 3<r(/)) in cycles of unit-weighted full-matrix 
least-squares refinement which employed anisotropic thermal 
parameters for all nonhydrogen atoms. 

The structural analysis shows that crystals of 5 are composed 
of discrete electron-precise [n^1-CSi[CHi)3][H^r)1-
CC=CSi(CH3)3] [(77S-C5H5)Co]3 cluster molecules (Figure 
1) which approximate rather closely C3t! molecular symmetry. 
Each Co atom achieves a filled valence-shell electronic con­
figuration by being bonded to two adjacent Co atoms through 
2-electron single bonds, to a cyclopentadienyl (Cp) ligand in 
a pentahapto fashion and to each of the two M3-bonded carbyne 
ligands on opposite sides of the Co3 triangle. Each of the five-
carbon Cp rings are coplanar to within 0.004 A and their 
least-squares mean planes intersect the C03 triangle in dihedral 
angles of 92.2-92.4°. Bond lengths and angles for chemically 
equivalent groupings of atoms, averaged in accord with ap­
proximate C31, molecular symmetry, include the following. 
Bond lengths: Co-Co, 2.383 (2, 9, 14, 3);12 Co-C (cyclopen­

tadienyl), 2.087 (12, 12, 27, 15);l2Co-C (carbyne), 1.873 (9, 
9, 16, 6); C1=C2 , 1.199 (13); C2-C3, 1.412 (14); Si-C1 (or 
C4), 1.839 (11, 12, 12, 2) A. Bond angles: Co-Co-C9 (Cp 
center of gravity), 150.0 (-,9,16, 6);12 Si2-C4-Co, 132.9(5, 
4, 6, 3);12 C2-C3-Co, 132.5 (7, 1, 1, 3); C1=C2-C3 , 179.0 
(10); Si1-Ci=C2 , 179.7 (15)°. The C 3-C 4 contact through 
the center of the Co3 triangle is 2.544 (14) A. 

The discovery of products 2,4, and 5 in the reaction of 1 with 
CpCo(CO)2 strongly suggests the simultaneous occurrence 
of several mechanisms. The dimerization path to 213 has as a 
possible crucial intermediate a bisvinylidene carbene species 
8 which could furnish product by reductive elimination. Vi-
nylidene is much more strongly bound to transition metals than 
if bonded acetylene,14 and there is precedence for acetylene-
vinylidene carbene rearrangements in the coordination sphere 
of transition metals.'5 The feasibility of biscarbene complexes 
has also been demonstrated recently in tantalum compounds, 
although reductive eliminations to give alkenes could not be 
effected.16 

Compounds 4 and 5 appear to be products derived from 
intermediately generated bis(trimethylsilyl)butadiyne (not 
detectable by FID-GC in starting material 1). For example, 
5 can be made in good yield (65%) by addition of diyne (1 
equiv) and CpCo(CO)2 (3 equiv) to boiling cyclooctane (see, 
however, ref 7b). An attractive mechanism for diyne formation 
from 1 involves formal "silyl-acetylide metathesis": 
2Me3Si-=—SiMe3 — Me3Si-SiMe3 + M e 3 S i -
=—=—SiMe3 . Although palladium-catalyzed disilane 
metatheses have been observed,17 and trimethylsilyl- and 
stannylacetylides appear capable of undergoing oxidative in­
sertion into the heteratom-sp-carbon bond,18 the postulated 
transformation is unprecedented. 

The remarkable facility with which alkyne cleavage ("di­
chotomy") occurs to furnish 5 from bis(trimethylsilyl)buta-
diyne points to the strong possibility that this might be a gen­
eral process in transition metal chemistry19 not dependent on 
the presence of electronically activated alkyne ligands.10 Bis-
carbyne complexes of the type 5 might also be intermediates 
responsible for the repeatedly reported 10a'b,2° occurrence of 
products formally derived from alkyne cleavage and metath­
esis.21 However, we have exposed compound 5 to excess bis-
(trimethylsilyl)butadiyne in boiling decane for prolonged pe­
riods of time (30 days) only to recover it unchanged (85%), in 
addition to (r;5-Cp)Co(r/4-cyclobutadiene) complexes7b and 
cyclic alkyne trimers.22 Similar reaction with 3 equiv of di-
phenylacetylene in boiling decalin gave r/4-tetraphenylcyclo-
butadiene-CpCo as the major product (18% based on Co) in 
addition to much intractable material, a trace of unreacted 5, 
and trace amounts of many incompletely characterized com­
pounds. No evidence for alkyne metathesis could be ob­
tained. 

The reported observations significantly expand the range 
of products obtainable from the reaction OfCpCo(CO)2 with 
alkynes and point the way to mechanistic, synthetic, and 
structural investigations currently being initiated in our lab­
oratories. 
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The Nature of Molybdenum(IV) in Aqueous 
4 M HCl Solution. Structure Analysis by EXAFS 

Sir: 

The structure of Mo(IV) in acidic aqueous media has oc­
casioned much speculation'"5 since its first synthesis in rela­
tively pure form in 1966.1 The solution structure of the red ion 
was originally proposed1 as MoO(OH)+, but Ardon and 
Pernick,4 on the basis of ion-exchange column elution behavior 
(4 M HPTS) and redox titrations, postulated a dinuclear 
structure (I). Their conclusion was challenged by Ramasami 
et al.,5 whose kinetics data were interpreted in terms of a mo­
nonuclear MoO2+ or Mo(OH)22+ structure. However, Ardon 
and co-workers6 performed cryoscopic experiments that rule 
strongly in favor of a dinuclear formulation such as I; what is 
more, the results of recent electrochemical studies7 are entirely 
consistent with some type of dimeric structure for 
Mo(IV)aq. 

[(H2O)4Mo Mo(OH2)4]4+ 

I 
X-ray absorption spectroscopy has recently been developed 

as a probe of molecular structure capable of identifying the 
type, number, and distances of atoms in the environment of a 
particular X-ray absorber.8'9 Analysis of the extended X-ray 
absorption fine structure (EXAFS) of a variety of Mo com­
pounds has demonstrated an accuracy of ±0.02 A in the de­
termination of Mo-X distances, along with a capacity for 
identifying the type and number of X atoms.10 In this com­
munication we present X-ray absorption data for Mo(IV) in 
4 M HCl that (1) conclusively rule out mononuclear formu­
lations and strongly suggest a dinuclear structure; (2) indicate 
the absence of multiply bound oxo groups; and (3) provide the 
first quantitative structural information about Mo-Mo and 
Mo-O bond lengths in this Mo(IV) complex. 

The molybdenum K-absorption edge of Mo(IV) in 4 M 
aqueous HCl is shown in Figure la.11 The principal inflection 
point occurs at 20014.9 ± 0.5 eV, which is within experimental 
error of the 20015.4 ± 0.5 eV value previously found for 
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